Assignment 7

Hand in no. 2, 3, 5, 9, and 10 by October 31, 2023.

1. Consider maps from \mathbb{R} to itself. Provide explicit examples of continuous maps with exactly one, two and three fixed points.
2. Show that the equation $x=\frac{1}{2} \cos ^{2} x$ has a unique solution in \mathbb{R}.
3. Let T be a continuous map on the complete metric space X. Suppose that for some k, T^{k} becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case $k=1$.
4. Show that the equation $2 x \sin x-x^{4}+x=0.001$ has a root near $x=0$.
5. Can you solve the system of equations

$$
x+y^{4}=0, \quad y-x^{2}=0.015 ?
$$

6. Can you solve the system of equations

$$
x+y-x^{2}=0, \quad x-y+x y \sin y=-0.002 ?
$$

Hint: Put the system in the form $x+\cdots=0, \quad y+\cdots=0$, first.
7. Let $A=\left\{a_{i j}\right\}$ be an $n \times n$ matrix. Show that

$$
|A x| \leq \sqrt{\sum_{i, j} a_{i j}^{2}}|x|
$$

8. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Show that the matrix $I+A$ is invertible if $\sum_{i, j} a_{i j}^{2}<1$. Give an example showing that $I+A$ could become singular when $\sum_{i, j} a_{i j}^{2}=1$.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be C^{2} and $f\left(x_{0}\right)=0, f^{\prime}\left(x_{0}\right) \neq 0$. Show that there exists some $\rho>0$ such that

$$
T x=x-\frac{f(x)}{f^{\prime}(x)}, \quad x \in\left(x_{0}-\rho, x_{0}+\rho\right)
$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.
10. Consider the iteration

$$
x_{n+1}=\alpha x_{n}\left(1-x_{n}\right), x_{0} \in[0,1] .
$$

Find
(a) The range of α so that $\left\{x_{n}\right\}$ remains in $[0,1]$.
(b) The range of α so that the iteration has a unique fixed point 0 in $[0,1]$.
(c) Show that for $\alpha \in[0,1]$ the fixed point 0 is attracting in the sense: $x_{n} \rightarrow 0$ whenever $x_{0} \in[0,1]$.

